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1. Introduction

One of the key problems in multiphase flows is that of predicting the high-Reynolds number
motion of bubbles or bubbly flows in a non-uniform ambient flow. It is well known that in the
range of moderate to large Reynolds number of clean bubbles, inviscid induced inertia effects may
be decoupled from the viscous ones. Depending on the relative importance of surfactant effects
and bubble size, the bubble can be considered as a rigid or deformable sphere. It is also evident
that large bubbles tend to loose their sphericity and become elongated (spheroidal-like shapes).
The motion in a bubble cloud, even in a dispersed one, is very complex also due to the non-
homogeneity of the ambient flow. Non-homogeneous effects can be induced by the proximity of
other moving bodies causing flow non-uniformities (which can be modeled within the inviscid
irrotational realm), shear induced forces (mainly of a lift type) generated by the ambient vorticity
field (assumed to be uniform) or by the baroclinical induced lift and drag forces resulting from the
weak density stratification of the ambient fluid. Determining the equations of motion for bubbles
by combining all of the above mentioned effects, is indeed a formidable task, and many path
instability phenomena observed in a cloud, such as zig-zagging, spiralling or bubble coalescence,
are still not well understood. In this context, a reference should be made to the comprehensive
recent review article by Magnaudet and Eames (2000), hereafter denoted as ME, which served as a
motivation for studying the titled problem.

An elegant and useful result presented in ME (Eq. (9)) is that for the force acting on a rigid
particle with volume 8 translating steadily with a linear velocity U

!
in an inviscid fluid of infinite

expanse with a weak uniform density gradient rq:
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F
!
¼ �CDq8ðU

!
� rqÞU

!
þ CLq8ðU

!

rqÞ 
 U

!
; ð1Þ

where the baroclinic drag coefficient CDq and lift coefficient CLq , are equal to half the added-mass
coefficient CM, i.e.,

CDq ¼ CLq ¼ CM=2: ð2Þ

The acclaimed D’Alembert paradox in inviscid hydrodynamics indicates that the pressure force
acting on a rigid body moving steadily with a rectilinear velocity in an unbounded homogeneous
quiescent fluid is null. If on the other hand, the ambient fluid has a uniform weak density gradient,
the same particle exhibits lift and drag forces, depending on the relative orientation between the
density gradient and the particle velocity. These forces depend linearly on the ambient density
gradient and quadratically on the body velocities. Eq. (1) is given in ME without proof and is
claimed to be valid only for an axisymmetric particle moving along its major axis of symmetry.
For a detailed proof, the reader is also referred to Eames and Hunt (1997), who examined the
steady non-Boussinesq flow of a rigid body in a stratified medium, under the assumption that the
characteristic length-scale of the density non-uniformity is much larger than the characteristic
length of the particle. Lagrangian formulations and the concept of the Darwin drift function
(Lighthill, 1956) are invoked to calculate the rotational flow associated with the displacement of
the isopycnal surfaces advected by the irrotational component of the flow field. An analogy be-
tween a steady flow in a direction perpendicular to a density gradient and that in a linear shear
flow (Yih, 1959), is also applied for the particular spherical configuration. A final expression for
the force is then obtained by performing a momentum flux balance over a large control surface
surrounding the body, by assuming that the fluid domain is unbounded.

In spite of the relative simple form of the baroclinic force expression (1), its derivation fol-
lowing Eames and Hunt (1997) is rather involved and is based on several physical assumptions
i.e., steady motion, unbounded fluid and rigid body. In addition, it may be valid only for spherical
shapes or other axisymmetric restricted shapes. Moreover, it does not unveil the possible im-
portant contributions of the angular velocity components on the total force nor does it expound
the corresponding expression for the torque acting on general non-spherical particles moving with
six degrees of freedom, (i.e., translation and rotation). Needless to say, that path trajectories of
non-spherical large bubbles are determined from the numerical solution of the six corresponding
equations of motion for the force and torque acting on the particle. The lack of a concise deri-
vation of the torque expression for a high Reynolds non-spherical bubble embedded in a non-
homogeneous medium, is indeed the first in the list of three important open problems in bubble
dynamics (see ME, p. 701).

A different approach based on the classical Hamiltonian mechanics, has been also recently
applied by Palierne (1999) for the same problem, by treating the body plus fluid as a combined
single dynamical system. A rigid body of arbitrary shape which moves with six velocity compo-
nents in a quiescent unbounded fluid with a constant density gradient is assumed. An asymptotic
theory is then constructed, where the small parameter is the ratio of the effective diameter of the
body to the length-scale of the density non-uniformity. The zeroth-order solution is assumed to be
governed by the potential flow field and vorticity effects, such as vortex stretching or the evolution
of the ambient vorticity (also due to stratification), are ignored altogether. Palierne (1999) derived
a corresponding expression for the torque acting on a rigid moving particle which is missing in

1064 T. Miloh / International Journal of Multiphase Flow 28 (2002) 1063–1073



Eames and Hunt (1997). In addition, EH’s derivation for the force (see their Table 1), incorrectly
distinguishes between 2-D and 3-D shapes, whereas that of Palierne does not discriminate between
the two. Palierne’s expressions do not exhibit any immediate resemblance to the rather simple
force expression (1) which clearly display, in a vector form, the drag and lift components.

One of the purposes of the present note is to provide a generalization of the above mentioned
analyses, so as to account for deformable bodies moving unsteadily in the close proximity of other
bodies or fixed boundaries. This alternative proof, can be then compared against that of Eames
and Hunt and Palierne and provide the missing linkage between the two. In fact, it is shown that
the corresponding expressions for the force and moment acting on an arbitrary particle moving in
a weak stratification, are readily obtained as a limiting case of a well-known general theorem
extending the Kelvin–Kirchhoff approach to account for a well-known dependence on gener-
alized coordinates (Miloh and Landweber, 1981). In addition to yielding a rather trivial solution
for the unbounded stratified case, the present methodology can be easily applied for non-rigid
shapes and for analyzing wall effects or flow interfaces. In some situations (as demonstrated in the
sequel) the baroclinic force induced by the flow stratification, can act in the opposite direction to
the hydrodynamic inertia force induced by a nearby boundary, so as to yield a vanishing small
force. The structure of this note is as follows: first we present the generalized so-called Kelvin–
Kirchhoff expressions for the pressure loads for deformable arbitrary shapes moving unsteadily
in a bounded weakly stratified inviscid fluid. The solutions of EH and Palierne are obtained as
limiting cases and the connection between the two is established. The last two sections include
demonstrations for both rigid and pulsating bubbles moving near a rigid wall in cases where the
baroclinic forces act in the opposite direction to the inertia ones.

2. The generalized Kelvin–Kirchhoff equations

Let us consider a 3-D rigid or deformable body moving unsteadily with linear ~UUðU1;U2;U3Þ
and angular ~XXðU4;U5;U6Þ velocities in an otherwise quiescent bounded incompressible fluid. We
employ two rectangular Cartesian coordinate systems. One is Xi, where i ¼ 1; 2; 3, fixed in space
and the other xi is attached to the moving body with the origin taken at its mass centroid. The
instantaneous position and orientation of the body are defined by the six generalized coordinates,
namely the coordinates of the origin X0i and by three independent angles hi, such as the Euler
angles, which define the unitary transformation matrix Cijðh1; h2; h3Þ between the fixed Xi and
moving xi systems. Thus, the rectilinear velocity components can be expressed in terms of the
generalized velocities _XX0i as

Ui ¼ Cij
_XX0j; _XX0i ¼ CjiUj; ð3Þ

where the dot denotes differentiation with respect to time. In a similar manner, the angular ve-
locity components Uiþ3, can be expressed in terms of _hhi, the time rate of change of hi, as

Uiþ3 ¼ Dij
_hhj; _hhi ¼ DI

ijUjþ3; ð4Þ

where Dij is the rotational transformation matrix and DI
ij is its inverse. A useful relation between

the matrices Cij and Dij is (Miloh and Landweber, 1981).
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Dij ¼
1

2
�irs

oCrt

ohj
Cst; ð5Þ

where �irs is the permutation tensor and all indices in (5) are equal to 1,2, or 3.
Next we express the total kinetic energy of the fluid, bounded internally by the moving de-

formable body and externally by the presence of some fixed boundaries, as

2T ¼ AabðXi; hj; tÞUaUb þ 2AadðXi; hj; tÞUa þ AddðXi; hj; tÞ; a;b ¼ 1; 2; . . . ; 6 ð6Þ

which depend quadratically on the body’s six velocities Ua. Here Aab is the traditional symmetric
second-order added-mass tensor, Aad is the deformation vector describing the interaction between
the body deformation and its rigid body motion and Add is a scalar representing pure deformation.
These added-mass like coefficients generally depend on the generalized coordinates and time. If
the body is non-deformable (rigid), then both Aad and Add vanish and the remaining added-mass
tensor Aab does not explicitly depend on time. In the case of a rigid body moving in an infinite
expanse of a quiescent fluid, the Aab’s are related to the displaced mass of the fluid by some co-
efficients depending only on the body’s shape. However, if a rigid body is moving in a confined
space (i.e., in the proximity of other bodies or near boundaries), then the added-mass tensor in (6)
depends on the generalized coordinates Xi and hj which describe the instantaneous location and
orientation of the body with respect to the fixed system.

Let us next use the general Lagrangian energy approach formulated in Miloh and Landweber
(1981), in conjunction with (6). This procedure leads to the following analytic expressions for the
force Fi and momentMi components exerted by the inviscid fluid on the moving deformable body:

Fi ¼ � _ppi þ �ijkpjUkþ3 �
opi
oXj

CkjUk �
opi
ohj

DI
jkUkþ3 þ

oT
@Xj

Cij ð7Þ

and

Mi ¼ � _qqi þ �ijkpjUk þ �ijkqjUkþ3 �
oqi
oXj

CkjUk �
oqi
ohj

DI
jkUkþ3 þ

oT
@hj

DI
ji; ð8Þ

where again i; j; k ¼ 1; 2; 3 and a; b ¼ 1; 2; . . . ; 6. In the above we have defined the generalized
hydrodynamic impulse p

!
and angular impulse q

!
by,

pi ¼ AaiUa þ Adi; qi ¼ Aa;iþ3Ua þ Ad;iþ3 ð9Þ

Eqs. (7) and (8) can be thus considered as a generalization of the corresponding rigid body an-
alyses of Miloh and Landweber for the case of deformable non-rigid bodies.

Several special cases can be next discussed:
Case 1: A rigid body moving in an unbounded domain of homogeneous and inviscid fluid in an

irrotational motion. The only surviving term here is the first quadratic term in the r.h.s of (6)
where the Aab’s are constants. For this case the velocity field~vv can be determined from a velocity
potential function, i.e., ~vv ¼ r/, where / ¼ Uaua and ua are the six unit Kirchhoff potentials
satisfying the following Neumann type boundary condition on the body surface S, i.e.,
ðo/a=onÞjs ¼ na and a proper decay condition at infinity. Here ni denotes the three components of
the normal to the body vector ~nn directed into the fluid and niþ3 are the three components of
the cross product~rr 
~nn between the body radius vector~rr (from the body’s centroid to a point on
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the surface) and~nn. Using the Gauss theorem implies that the added-mass tensor Aab, defining the
kinetic energy of the fluid (6), is a purely geometrical constant given by

Aab ¼ �q
Z
S

uanbds ¼ �q
Z
S

ubna ds ¼ Aba; ð10Þ

where q is the uniform ambient density of the fluid. Thus, the last three terms in both (7) and (8),
which involve partial derivatives of Aab vanish, and one readily recovers the classical (unbounded
case) Kelvin–Kirchhoff expressions for the force and moment in terms of the added-mass coef-
ficients.

Case 2: A deformable body moving in an unbounded flow domain of inviscid fluid with uni-
form density. The total velocity potential is given now by / ¼ Uaua þ ud, where ud is the so-called
deformation potential. If the time dependent shape of the deformable body is denoted by
Sð r!; tÞ ¼ 0, then the Neumann type boundary condition for ud is related to the instantaneous
shape of the body by ðoud=onÞjS ¼ � _SS=jrSj, where the dot represents differentiation with respect
to time. Here all the added-mass like terms defining the total kinetic energy of the fluid depend
explicitly on time, since S does. The various deformation terms appearing in (6) can be thus
defined as:

Aad ¼ �q
Z
S

udna dS ¼ Ada; Add ¼ �q
Z
S

ud

oud

on
dS ¼ q

Z
S

ud

S
�

rSj j dS: ð11Þ

For the case of a deformable body in an infinite fluid the term Aad, can be identified as the
Kelvin impulse (a ¼ 1; 2; 3) or the Kelvin impulse-couple (a ¼ 4; 5; 6). For further definitions,
including a reference to the case of self propulsion of a deformable body in an unbounded fluid,
see also Miloh and Galper (1993).

Case 3: A rigid body moving in a bounded domain by some fixed boundaries of homogeneous
and inviscid fluid. The external boundaries are either rigid ðo/=on ¼ 0Þ or equi-potential ð/ ¼ 0Þ,
modeling for example a free-surface under the high-frequency limit. It is evident that also in this
case the added-mass tensor is given by (10) with the only exception that now the Aab’s are no
longer constant and instead depend on the generalized coordinates ðXi; hjÞ describing the in-
stantaneous position and orientation of the moving body with respect to the inertial system. The
generalized expressions for the force and moment acting on the moving body in the presence of
nearby boundaries, are then given by (7) and (8) respectively.

Case 4: A rigid body moving in an unbounded domain of a weakly stratified incompressible
and inviscid fluid such that arq=q � 1. Here rq denotes the uniform density gradient, a rep-
resents a typical size of the body and q is again the ambient fluid density. Under these assump-
tions, the added-mass coefficients (correct to leading-order) can still be expressed by (10), but since
q is considered now as a weak function of Xi, one simply gets

oAab

oXj
¼ � oq

oXj

Z
S

uanbds ¼ Aab
o

oXj
ðln qÞ; oAab

ohj
¼ 0: ð12Þ

Thus, the extra dynamic terms in the equations of motion, which depend linearly on the density
gradient of the surrounding fluid, are readily found from (7), (8) and (12) as
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F ðqÞ
i ¼ � AaiCkjUk

 
� 1

2
AabCijUb

!
Ua

o

oXj
ðln qÞ; ð13Þ

M ðqÞ
i ¼ �Aa;iþ3CkjUaUk

o

oXj
ðln qÞ: ð14Þ

If instead of expressing the density gradient in the laboratory (inertial) coordinate system oq=oXj,
we choose to express it in the moving (attached) system ðoq=oxjÞ 
 rjq, where ðoq=oxjÞ ¼
Cijðoq=oXjÞ, one gets

F ðqÞ
i ¼ � 1

q
ðAairkqUk �

1

2
AabriqUbÞUa ð15Þ

M ðqÞ
i ¼ � 1

q
Aa;iþ3rkqUkUa ð16Þ

These are basically the rigid-body expressions given in Eq. (20) of Palierne (1999) using tensor
notations. In order to examine the connection between the above and the corresponding analysis
of Eames and Hunt (1997), it is convenient to use vector notations and express (15) and (16) in
terms of the rigid impulse pr

!
and angular impulse qr

!
(defined in the r.h.s of Eq. (9) for Ada ¼ 0Þ as,

~FF ðqÞ ¼ 1

2q
ð~ppr � ~UU þ �qqr � ~XXÞrq � 1

q
ð~UU � rqÞ~ppr

¼ � 1

2q
ð~UU � rqÞ~ppr þ

1

2q
ð~ppr 
rqÞ 
 ~UU þ 1

2q
ð~qqr � ~XXÞrq; ð17Þ

~MM ðqÞ ¼ � 1

q
ð �UU � rqÞ~qqr: ð18Þ

Eqs. (17) and (18) are the sought expressions for the baroclinic force and moment (terms pro-
portional to rq) acting on 2-D or 3-D translating and rotating rigid bodies.

In the case of a non-rotating ð~XX ¼ 0Þ axisymmetric body moving along its axis of symmetry, the
added-mass tensor is purely diagonal and thus~pp ¼ A~UU where A is the corresponding added-mass
coefficient. Thus, Eq. (17) reduces precisely to Eqs. (1) and (2) (given originally in Eq. (6.9) of
EH), where CM ¼ ðA=8Þ. It is also important to note that Eq. (18) provides the corresponding
closure equation for the moment from which the actual trajectory of a general body moving in a
weakly stratified flow field can be obtained. Consequently, we have demonstrated the connection
between the two independent analyses of Palierne and EH for the baroclinic force and also
provide a generalization of the latter for arbitrary deformable shapes and motions (i.e., including
body rotation). It is interesting to note that as long as the body’s linear velocity is perpendicular to
the gradient density, i.e., �UU � rq ¼ 0, the torque on the body is null regardless of the body’s
angular velocity. The body will always experience a lift force in a direction perpendicular to both
~UU and~pp 
rq, as long as the linear impulse is not colinear with the density gradient. There exists
an additional force component in the direction of rq for a rotating body, if the angular impulse~qq
has a non-vanishing projection along the vector of angular velocity ~XX.

Case 5: Finally, we consider the case of a deformable body embedded in an unbounded fluid.
Here the baroclinic force is given by (17), which must be augmented by the additional term
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1
2
Addrq (7), where pr

!
is replaced by p

!
(9). In a similar manner, the combined baroclinic moment is

simply given by (18) when qr
!

is replaced by q
!
defined in (9).

What remains now is to find the condition under which Eqs. (17) and (18) are valid from the
physical point of view. It is clear that the motion of an inviscid and stratified fluid is rotational in
general, since the Lagrangian time evolution of the vorticity vector ~xx ¼ r
~vv is given by the
Helmholtz equation, i.e.,

D~xx
Dt

¼ ð~xx � rÞ~vvþ ðrq 
rPÞ=q2; ð19Þ

where P is the dynamic pressure in the fluid. The first term on the right hand side of (19) represents
3-D vortex stretching and the second term is the so-called Bjerknes contribution. Thus, even if the
motion starts from rest, say at time t ¼ 0þ, where initially the ambient vorticity is null, the time
derivative of the vorticity at t ¼ 0þ is non-zero. By invoking the Helmholtz decomposition for the
velocity field ~vv ¼ r/ þ~vvr, where ~vvr denotes the rotational (vortical) part of ~vv ðr 
~vvr 6¼ 0Þ, one
gets therefore that the term~vvr can be ignored in the Euler equation for small time after the motion
has commenced, but the inertial term ðo~vvr=otÞ has to be kept in the same equation, even initially.
However, since the impermeable body boundary conditions are satisfied by the potential part of
~vv, one gets that ~vvr �~nnjs ¼ 0 and ðo~vvr=otÞ � �nnjs ¼ 0 at t ¼ 0þ. It can be shown then that the term
ðo~vvr=otÞ in the Euler equation does not contribute to the force and moment acting on the body,
since~vvr is solenoid andZ

8þ

o~vvr
ot

� ruad8 ¼
Z
8þ

r � ua

o~vvr
ot

 !
d8 ¼ �

Z
S

o~vvr
ot

�~nnds ¼ 0; ð20Þ

where 8þ denotes the volume of the fluid exterior to the body.
It would be also useful to have at least an order of magnitude for the ‘‘short time interval’’

during which the present analysis can be used. For this purpose let us define V and l as the
characteristic velocity and length scale of the body and thus denote the tilded dimensionless time
by t� ¼ tV =l. The Bjerknes term in the Helmholtz vorticity transport equation, then suggests that
the analysis is valid for t� < q=ðlrqÞ. Clearly for inviscid homogeneous (q ¼ const) fluids, there is
no restriction on time and the above derivation is valid for all time. However, for a stratified flow
ðrq 6¼ 0Þ, the time interval is inversely proportional to the ambient density gradient and the
body’s size.

One may conclude therefore that expressions (17) and (18) for the baroclinic force and torque
acting on a body moving in a weakly stratified fluid, which have been derived using a potential
framework, are still valid during a short time interval after introducing the body impulsively into
an otherwise quiescent fluid medium with a uniform density gradient.

3. Baroclinic motion of a bubble near a wall

In order to demonstrate the preceding analysis, we consider the following simplified case which
is connected to some applications of bubble dynamics in non-homogeneous flows. A spherical
bubble of (constant) radius a is moving with a constant velocity U towards (Case A) or parallel
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(Case B) to a rigid plane wall (Fig. 1). The fluid is assumed to be inviscid and incompressible (thus,
possible near-wall viscous effects are excluded) but there is a (small) uniform density gradient rq
in the direction perpendicular to the wall. Such a gradient may be caused in the fluid, for example,
by buoyancy effects resulting from some thermal boundary conditions (heating/cooling) applied
on the wall. Effects of density stratification may then be predominant near the boundary. Because
of the assumptions of flow steadiness, perfect geometrical sphericity and the neglect of viscous
stresses, the D’Alembert paradox implies that once moving in an unbounded and homogeneous
flow, a spherical bubble (or drop) will experience no force. However, in the presence of weak
stratification, there is a drag/thrust force acting on the bubble in the opposite direction to rq and
a lift force in the direction of rq (see Eq. (17)). Thus, such a baroclinic type force tends to push
the bubble towards the wall in Case A and away from the wall in Case B. Recalling that the
added-mass for a sphere is A ¼ 1

2
q8 (8 being its volume), it follows from (17) that the baroclinic

forces in both cases are

F ðqÞ
a ¼ � 1

4
8jrqjU 2; F ðqÞ

b ¼ 1

4
8jrqjU 2: ð21Þ

However, if the bubble is moving in the proximity of a rigid wall, there exists an additional hy-
drodynamic force (wall effect) that may act in opposite directions to the baroclinic forces. Under
some circumstances, there can be also a mutual cancellation between these two types of forces.
The wall induced inertia forces are again of attraction/repulsion (from the wall) type and depend
directly on the instantaneous distance h of the bubble from the rigid wall. It follows from (7) that
these wall-effect forces are given by

F ðwÞ
a ¼ � 1

2

oAðaÞ

oX1

U 2; F ðwÞ
b ¼ 1

2

oAðbÞ

oX1

U 2; X1 ¼ h: ð22Þ

The corresponding added-masses for these two cases can be readily determined from Milne-
Thompson (1960, p. 504), as the leading-order terms for ða=hÞ � 1, i.e.,

AðaÞ ¼ 1

2
q8 1

�
þ 3

8

a
h

� �3�
; AðbÞ ¼ 1

2
q8 1

�
þ 3

16

a
h

� �3�
; ð23Þ

which, when combined with (22), lead eventually to

Fig. 1. Definition sketch.
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F ðwÞ
a ¼ 9

32

q8
a

a
h

� �4
U 2; F ðwÞ

b ¼ � 9

64

q8
a

a
h

� �4
U 2: ð24Þ

Clearly, these wall effect forces become significant as the bubble is in closed proximity to the wall,
i.e., as ða=hÞ ! 1�, and may be neglected altogether if the bubble is far from the wall. Hence, it is
possible to find a critical distance from the wall, say hc, for which the baroclinic and wall-induced
forces, which act in opposite directions, precisely cancel each other resulting in a force-free
motion. Comparing (21) and (24) implies that such a mutual cancellation occurs for

arq
q

hc
a

� 	4

¼ 9

8
ðCase AÞ ¼ 9

16
ðCase BÞ ð25Þ

One may conclude therefore that hydrodynamic wall effects in a weakly stratified flow can be
ignored compared to the baroclinic effects if the distance from the wall is larger than aðq=arqÞ1=4.

4. Pulsating bubble near a wall

In order to demonstrate the coupling effect between weak stratification and body surface de-
formation, let us consider the case of a stationary bubble lying at a distance h from a rigid wall
in a quiescent fluid of uniform density gradient rq. If the direction of gravity is colinear with X1,
then the bubble will be in perfect equilibrium providing its average density is equal to the fluid
density evaluated at the bubble center. Now, let us assume that due to some forcing mechanism
the bubble starts to pulsate harmonically about its mean radius a with an amplitude a� and
constant angular frequency x, such that sphericity is preserved for all time (see Fig. 1, Case C). As
a result of this non-isochoric pulsations the bubble will experience a Bjerknes type force of at-
traction towards the wall (see for example, Pelekasis and Tsamopoulos, 1993). Since here Ua ¼ 0
and the surface deformation is radially symmetric, the time derivative of the Kelvin-impulse in (7)
for an homogeneous fluid can be ignored with respect to ðoAdd=oX1Þ, when seeking the leading-
order force to oða=hÞ. In order to evaluate Add, we first note that the far-field (unbounded) de-
formation potential ud, can be described by a point source located at the bubble center with an
output a3x. By considering its first image in the rigid wall, one gets from (7) and (11) that to
leading-order,

F ðwÞ
c ¼ �2pqa4e2x2ða=hÞ2 ð26Þ

confirming the well result that the Bjerknes force acting on two pulsating bubbles is of an at-
traction nature and is inversely proportional to the square of the distance between them.

Nevertheless, for a non-homogeneous flow, our theory predicts that there is yet another force
component which arises from the coupling between the body’s pure surface deformation and the
uniform ambient density gradient, namely

F ðqÞ
c ¼ Add

o

oX1

ðln qÞ ¼ 4pa5e2x2 rqj j ð27Þ

which unlike F ðqÞ
c , does not depend (to leading-order) on the distance from the wall and in a

similar manner to F ðqÞ
b , tends to push the bubble in the direction of the density gradient (i.e., away
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from the wall in this case). Thus, as in Cases A and B modeling rigid bubbles moving rectilinearly
in the proximity of a wall, also in the case of a pulsating bubble, the baroclinic and inertia (wall-
effect) forces, act in opposite directions. One can define here also a critical distance hc, for which
the inertia (deformation) and the baroclinic force terms balance each other, i.e., hc=a ¼
ðq=2a rqj jÞ1=2. It can be shown that the analysis above is valid during a time interval satisfying
0 < xt < ðq=ajrqjÞ.

5. Summary

An analytic study of the pressure induced forces and moments acting on a general rigid
or deformable body moving unsteadily with six degrees of freedom in an otherwise quiescent
bounded domain of an inviscid and incompressible fluid with a weak density gradient is presented.
The analysis is based on using the generalized Kelvin–Kirchhoff equations of motion and the
energy based added-mass formulation of Miloh and Landweber (1981), by taking into account the
flow stratification and the proximity of interfaces and other rigid boundaries. In the case of rigid
bodies embedded in an unbounded expanse of inviscid fluid, the general expressions reduce to
those recently obtained by Eames and Hunt (1997) and Palierne (1999) and the equivalence be-
tween these two independent formulations (including the redundant distinction between 2-D and
3-D shapes) is also established.

It appears that if the rectilinear body velocity is perpendicular to the uniform density gradient
the torque on the body is null regardless of its angular velocity. The body will experience a lift
force, as long as the linear impulse is non-colinear with the density gradient. There exist an ad-
ditional force acting in the direction of rq, if the angular impulse is not orthogonal to the angular
velocity. Thus, bearing the D’Alembert paradox in mind, it is demonstrated that a rigid body
moving steadily in an unbounded inviscid fluid domain possessing weak uniform density gradi-
ent, generally exhibits a drag/thrust in a direction opposite to rq and a lift force in the direction
of rq.

The baroclinic reactions are to leading-order uncoupled from the viscous effects as well as from
the common inertia terms resulting from the proximity of fluid interfaces and solid boundaries
(i.e., wall effects) or those induced by body deformation or shape oscillations (i.e., Bjerknes
forces). These baroclinic type pressure loads, which are usually most pronounced near flow
boundaries, must be combined with the usual inertia and viscous effects acting on the particle in
order to determine its physical trajectory. It should be also noted that while viscous effects may be
ignored with respect to inertia especially in the case of clean bubbles accelerating in unbounded
fluid, the proximity of rigid boundaries generally enhanced the shear induced viscous terms which
can dominate the overall particle dynamics. However, the analysis of viscous wall effects is beyond
the scope of this note, which is performed here within the framework of inviscid flow theory, in an
attempt to isolate and capture the leading inertia and flow stratification induced effects.

The general analysis is demonstrated by considering a rather simple example of a rigid or
pulsating spherical shape (bubble) moving near a rigid plane boundary in the presence of a
uniform density gradient in a direction normal to the plane. Special attention is payed to the
limiting and interesting cases where there is a perfect cancelation between the baroclinic and
inertia effects.
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